
457

0022-4715/03/0800-0457/0 © 2003 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 112, Nos. 3/4, August 2003 (© 2003)

Critical Behavior in a Quasi D Dimensional Spin
Model1

1 Dedicated to the memory of Adrian Patrascioiu

Erhard Seiler2 and Karim Yildirim2

2 Max–Planck-Institut für Physik, Werner–Heisenberg-Institut, Föhringer Ring 6, 80805
Munich, Germany; e-mail: ehs@mppmu.mpg.de

Received October 4, 2002; accepted February 21, 2003

We study a classical spin model (more precisely a class of models) with O(N)
symmetry that can be viewed as a simplified D dimensional lattice model. It is
equivalent to a non-translationinvariant one dimensional model and contains
the dimensionality D as a parameter that need not be an integer. The critical
dimension turns out to be 2, just as in the usual translation invariant models.
We study the phase structure, critical phenomena and spontaneous symmetry
breaking. Furthermore we compute the perturbation expansion to low order
with various boundary conditions. In our simplified models a number of ques-
tions can be answered that remain controversial in the translation invariant
models, such as the asymptoticity of the perturbation expansion and the role of
super-instantons. We find that perturbation theory produces the right asympto-
tic expansion in dimension D [ 2 only with special boundary conditions. Finally
the model allows a test of the percolation ideas of Patrascioiu and Seiler.

KEY WORDS: Critical behavior; classical spin system; superinstantons; per-
turbation theory; percolation.

1. INTRODUCTION

In their well-known paper on the Mermin–Wagner theorem, (1) Dobrushin
and Shlosman considered in a side remark a model that is the prototype of
the model studied in this paper. Their purpose was to illustrate the impor-
tance of the smoothness of the interaction for the question of symmetry
breaking. Here we take advantage of the fact that this model on the one
hand has almost the simplicity of a one-dimensional model but on the
other hand has a tunable parameter D playing the role of dimension. For



integer values of D, the model can actually be implemented as a model on
the lattice ZD with nontranslational Hamiltonian.

Such a model was also studied in ref. 2 in order to verify that the
smoothness restrictions of ref. 1 can be relaxed and are only needed in a
neighborhood of the minima of the Hamiltonion. Finally, in Georgii’s
book (3) a similar non-translation invariant chain, but with Ising spins is
analyzed.

Here we use this type of model as a laboratory to test various ideas
proposed by Patrascioiu and the first named author in their quest to prove
that the conventional distinction between abelian and nonabelian is unjus-
tified. The plan of the paper is as follows: After giving the definitions of the
model and the various boundary conditions used, in Section 3 we use the
full, nonperturbative solution of the model to study the phase structure as
a function of the ‘‘dimension’’ D. It turns out that the critical dimension is
still D=2; for D [ 2 the model does not show spontaneous magnetization
or phase coexistence, whereas for D > 2 is does. For D=2 the model
(without external magnetic field) and does not show asymptotic freedom.

In Section 4 we contrast those nonperturbative results with the results
of (low order) perturbation theory (PT). We find that for zero magnetic
field PT at the level of one loop already becomes dependent on the
boundary conditions (b.c.) used for all D [ 2 and therefore in general does
not yield the correct asymptotic expansion of the model. The analogous
result for the 1D model is well known (refs. 4 and 5). In this simple class of
models it is, however, easy to find b.c. in which local observables are inde-
pendent of the size L of the system and hence PT of the finite system does
give the correct asymptotic expansion. Such b.c. exist in principle also for
the full translation invariant models. Formally they arise by integrating out
all the variables outside a box of suitable size, more precisely these b.c. are
obtained using the Dobrushin–Lanford–Ruelle (DLR) equations. (6, 7) In our
casefor 1 [ D [ 2 those DLR boundary conditions turns out to be simply
the standard free b.c. Whereas the nonperturbative results are rather easily
obtained for our model, PT turns out to be harder to compute; for this
reason we limit ourselves to one loop. This is sufficient, however, for seeing
all the effects and subtleties we are interested in.

Finally, in Section 5, we discuss some percolation properties of our
model. In particular we test the ideas of refs. 8 and 9 on the percolation
properties of various sets defined by spins pointing in certain subsets of the
spheres SN − 1. We find that in 1 [ D [ 2 we are generally in the situation of
‘‘critical percolation,’’ as suggested by refs. 8 and 9.

We should stress that our analysis shows that there is no qualitative
difference between the abelian case N=2 and the nonabelian one (N > 2).
In that sense it lends support to the ‘‘heretical’’ scenario of Patrascioiu and
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Seiler that predicts the existence of a ‘‘soft’’ phase in all 2D O(N) models.
Sceptics might still argue, however, that the model is more ordered than the
standard translation invariant ones and that this is the reason for the
existence of the soft phase.

In this paper we are to a large extent presenting results of ref. 10, with
emphasis on the physical interpretation. For more mathematical and com-
putational details we refer the reader to that work.

2. THE MODEL

2.1. Definition

To motivate the model, we start with a general class of classical O(N)
spin models defined on lattices ZD, but with link dependent couplings. To
each lattice site x ¥ ZD we associate a classical O(N) spin, i.e.,

x Q s(x), s(x) ¥ RN, ||s(x)||=1. (2.1)

The Hamiltonian is of the form

H=− C
OxyP

bxys(x) · s(y) − h C
x

sN(x) (2.2)

where sN(j)=s(j) · eN and eN is the unit vector in RN pointing in the Nth
direction; the sum is over nearest neighbors and h represents an external
magnetic field; the dot denotes the standard euclidean scalar product
in RN.

We now choose an origin and surround it with a family of concentric
quadratic (cubic, hypercubic) ‘‘shells’’ (see Fig. 1). We ‘‘freeze’’ all the links
(nearest neighbor pairs) sitting inside one of the shells by sending the cor-
responding bxy Q ., thereby forcing all spins within such a shell to be
equal. All other couplings bxy are set equal to a constant b.

We can therefore identify all the points within a ‘‘shell;’’ thus the
resulting model can be equivalently described as a non translation invariant
semi-infinite spin chain formally defined by the Hamiltonian

H=− C
.

j=1
(bjs(j) · s(j+1) − hjsN(j)) (2.3)

where

bj=2D(2j − 1)D − 1, j=1, 2, 3,... (2.4)

hj=hgj (2.5)
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Fig. 1. Scheme of the lattice for D=2; on the thick lines we send bxy Q ..

with

gj=[(2j − 1)D − (2j − 3)D], j=2, 3, 4,... (2.6)

and

g1=1. (2.7)

Note that for j Q . both bj and gj behave asymptotically like 2D(2j)D − 1.
As usual, we will have to study first finite chains of length L and then

take the thermodynamic limit L Q .. This will require imposing certain
b.c. at the end of the chain. In addition we will also generalize the model by
introducing similar b.c. at the beginning of the chain. The form of the
Hamiltonian given above corresponds to free b.c. at the beginning of the
chain, which is natural from the point of view of the D-dimensional lattice,
but we will also be interested in posing Dirichlet b.c. at the origin, which in
combination with Dirichlet b.c. at j=L will correspond to the superins-
tanton b.c. introduced in ref. 11. A class of b.c. that allows to interpolate
between free b.c. and Dirichlet b.c. is given by the following finite volume
Gibbs measures:

dmL=
1

ZL
e−bHL D

L

j=1
dn(s(j)) (2.8)
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where dn is the O(N) invariant probablity measure on SN − 1 and

HL=− C
L − 1

j=1
bjs(j) · s(j+1) − C

L

j=1
hjsN(j) − asN(1) − bsN(L). (2.9)

Free b.c. at j=1 (j=L) are given by putting a=0 (b=0); Dirichlet b.c. at
j=1 (j=L) are obtained by taking the limit a Q . (b Q .). Putting
b=bL, however, also corresponds to Dirichlet b.c., but at j=L+1 for a
chain of length L+1. Likewise a=1 can be interpreted as Dirichlet b.c. on
an extended chain.

We will also make use of more general b.c. at j=L which are obtained
by replacing the factor exp(bbsN(L)) dn(s(L)) in the Gibbs measure for a
finite chain with a general positive measure written formally (in distribu-
tional notation) as k̃(s(L)) dn(s(L)). We may even let k̃ depend on the
length L of the chain; in particular this is necessary if we want to describe
Dirichlet b.c. at j=L+1 by choosing b=bL, as described above.

The model we have defined contains the dimension D as a parameter
which no longer has to be an integer (it could even be chosen complex). In
the following we will treat D as a real parameter \ 1 and we will use
almost exclusively the representation of the model on a chain.

Let us note one crucial fact which turns out to be responsible for the
dependence of the properties of the model on the ‘‘quasidimension’’ D:

Proposition 2.1. For 1 [ D [ 2 and any k > 0 ;L
j=k b−1

j Q . for
L Q ., whereas for D > 2 ;L

j=k b−1
j converges to a finite limit. More pre-

cisely, for D < 2 ;L
j=k b−1

j =O(k2 − D), for D=2 it is O(ln k), and for D > 2
it approaches its limit like k2 − D.

The proof is a straightforward consequence of the asymptotics of
the bj.

2.2. Thermodynamic Quantities

To define thermodynamic quantities like free energy density, magneti-
zation or susceptibility, we first note that the volume of the chain of length
L is naturally defined as

VL=(2L+1)D. (2.10)

The free energy density then becomes

fL=−
1

bVL
ln ZL (2.11)
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and the magnetization we define as usual as

ML=−
“fL

“h
. (2.12)

Thus

ML=
1

VL
C
L

j=1
gjOsN(j)P. (2.13)

Likewise we define the (longitudinal) susceptibility as

qL=
“ML

“h
=−

“
2f

“h2 (2.14)

which means

qL=
b

VL
C
L

j, l=1
gj gl[OsN(j) sN(l)P−OsN(j)POsN(l)P]. (2.15)

All these definitions are analogous to those in translation invariant
systems. Of course we are mostly interested in the thermodynamic limit
L Q .. We use the definitions (2.13) and (2.15) to define the spontaneous
magnetization and the susceptibility also for the thermodynamic limit at
h=0.

2.3. Superinstantons

For D [ 2 the model has superinstantons, just like the translation
invariant model. (11) These are configurations of arbitrarily low energy
which are disordering the system and are responsible for the absence of
spontaneous symmetry breaking (Mermin–Wagner theorem (12)).

More concretely, these configurations are obtained by imposing b.c. at
j=i and j=k such that s(i) · s(k)=arccos(a) < 1 and minimizing the
energy under those b.c. The existence of such a minimizing configuration is
obvious, because the energy is a continuous function on a compact set. It is
clear that in this minimal configuration the spin will vary on a great circle
in SN − 1, so we can describe the configuration by the angle

fj=arccos(s(j) · s(j+1)). (2.16)
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The quantitiy to be minimized is then

E(i, k)=− C
k − 1

j=i
bj(cos(fj) − 1) (2.17)

under the condition that

C
k − 1

j=i
fj=a. (2.18)

Using a Lagrange multiplicator l one obtains therefore the equations

l − bj sin(fj)=0 (2.19)

which has the solutions

fj=arcsin 1 l

bj

2 (2.20)

and yields for the minimizing configuration

Es.i.(i, k)= C
k − 1

j=i
bj
11 −=1 −

l2

b2
j

2 (2.21)

with

C
k − 1

j=i
arcsin 1 l

bj

2=a. (2.22)

We will now derive upper and lower bounds for Es.i.(i, k). Using

1 − x [ `1 − x [ 1 −
x
2

for 0 [ x [ 1 (2.23)

we obtain

1
2

C
k − 1

j=i

l2

bj
[ Es.i.(i, k) [ C

k − 1

j=i

l2

bj
. (2.24)

Bounds for the Lagrange multiplier l are obtained using

x [ arcsin(x) [ 2x for 0 [ x [ 1 (2.25)
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from which we obtain, using Eq. (2.19)

l C
k − 1

j=i
b−1

j [ a [ 2l C
k − 1

j=i
b−1

j (2.26)

or

a

2 ;k − 1
j=i b−1

j

[ l [
a

;k − 1
j=i b−1

j

. (2.27)

Combining this with Eq. (2.24) we finally obtain

a2

8 ;k − 1
j=i b−1

j

[ Es.i.(i, k) [
a2

;k − 1
j=i b−1

j

. (2.28)

Here we can see again the distinction between low (D [ 2) and high (D > 2)
quasidimension:

For D [ 2

lim
k Q .

Es.i.(i, k)=0 (2.29)

whereas for D > 2 Es.i.(i, k) is uniformly in k bounded away from 0:

Es.i.(i, k) \
a2

8 ;.

j=i b−1
j

> 0. (2.30)

The fact that the superinstantons in D [ 2 cost arbitrarily little energy is
responsible for the fact that the system has no long range order ( just as
the translation invariant models are according to the Mermin–Wagner
theorem (12)). This will be proven in the next section.

Due to the freezing of all the spins within one ‘‘layer,’’ the model does
not have instanton-like configurations.

3. NONPERTURBATIVE ANALYSIS

3.1. Transfer Matrices

Because our model only couples nearest neighbors, it can be described
easily in terms of transfer operators, which are of course site dependent.
These transfer ‘‘matrices’’ are trace class operators on the Hilbert space

H=L2(SN − 1, dn), (3.1)
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which we normalize such that the largest eigenvalue equals 1. In slight
abuse of notation, we will use the same symbol for the operators and their
integral kernels.

The normalized transfer matrix from site j to site j+1 is

T̃j(s(j), s(j+1))=
1
zj

exp[b(bjs(j) · s(j+1)+hjsN(j))] (3.2)

with zj chosen such that

||T̃j ||=1. (3.3)

These transfer operators are not self-adjoint, but it is easy to transform
them by a similarity transformation with a bounded operator into the self-
adjoint operators with integral kernel

Tj(s(j), s(j+1))=
1
zj

exp 5b(bjs(j) · s(j+1))+
hj

2
(sN(j)+sN(j+1))6 .

(3.4)

These operators are in fact positive, as can be seen easily be expanding
exp[s(j) · s(j+1)].

Since the transfer operators have also positive integral kernels, by a
trivial change of normalization it is possible to interprete them as transition
probabilities and the whole system as a Markov chain. This point of view
will, however, not play a great role in this paper.

We introduce a shorthand for products of transfer matrices:

Tjk — D
k − 1

j=1
Tj (3.5)

and define

bj — bbj. (3.6)

Using the transfer matrices, it is possible to rewrite for instance the
expectation value of a spin component at site k

Osa(k)PL — F dmL sa(i) (3.7)

in the form

Osa(i)PL=
(k, T1isaTiLk̃)

(k, T1Lk̃)
(3.8)
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where we denote by (. , .) the scalar product in H. k and k̃ are suitable
vectors in H=L2(SN − 1) describing the b.c. (actually we may even replace
them by general positive measures on SN − 1). The spin variable sa appearing
on the right hand side of Eq. (3.8) is to be interpreted as a multiplication
operator on L2(SN − 1).

The spin-spin two point function

Osa(i) sb(k)PL — F dmL sa(i) sb(k) (3.9)

for i [ k can similarly be expressed as

Osa(i) sb(k)PL=
(k, T1isaTiksbTkLk̃)

(k, T1Lk̃)
. (3.10)

For a nonvanishing magnetic field we do not expect any interesting
phenomena; the transfer matrices will force the spins ‘‘at infinity’’ to be
aligned with the direction of the magnetic field eN, therefore one expects a
unique thermodynamic limit, independent of the b.c. imposed at L.

For vanishing magnetic field the situation is more interesting; there-
fore from now on we will assume h=0. To analyze the situation, we need
some preparation (see for instance refs. 13 and 14).

The Hilbert space H=L2(SN − 1, dn) can be decomposed into the
eigenspaces Hl of the Laplace–Beltrami operator DLB on the sphere SN − 1:

H=Â
.

l=0
Hl. (3.11)

The projections Pl onto the eigenspaces are integral operators which for
N > 2 can be expressed in terms of the Gegenbauer polynomials Cl (see
refs. 15 and 16)

C
N
2

− 1

l (x)=
1

C(N
2 − 1)

C
[ l

2]

m=0
(−1)m C(N

2 − 1+l − m)
m! (l − 2m)!

(2x) l − 2m, N > 2,

C0
l (x)= C

[ l
2]

m=0
(−1)m C(l − m)

C(m+1) C(l − 2m+1)
(2x) l − 2m, l ] 0 (3.12)

as follows:

Pl(s, s −)=
2l+N − 2

N − 2
C

N
2

− 1
l (s · s −). (3.13)
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For N=2 the Gegenbauer polynomials have to be replaced by the
Chebyshev polynomials of the first kind:

To(x)=1 (3.14)

Tl(x)= lim
N Q 2

1
N − 2

C
N
2

− 1
l (x) for l > 1. (3.15)

In the following we will write the equations in the form valid for N > 2,
involving the Gegenbauer polynomials, with the understanding that for
N=2 the analogous formulae involving the Chebyshev polynomials hold.

Due to the O(N) invariance of the transfer matrices for h=0, all Tj

commute with those projections, and the spaces Hl are also simultaneous
eigenspaces of all Tj. Because the Gegenbauer (Chebyshev) polynomials
form a complete orthogonal set on the interval [ − 1, 1], the integral kernel
of the transfer matrix can be expanded in the sense of L2([ − 1, 1],
(1 − x2)

N − 2
2 dx) as

Tj(s, s −)= C
.

l=0
clC

N/2 − 1
l (s · s −). (3.16)

From this we see that each subspace Hl is an eigenspace with eigenvalue ll

of Tj. The eigenvalues ll are therefore given by

ll(bj)=
tr TjPl

tr Pl
=

1
zj

F
1

−1
dx exp(bjx)(1 − x2)

N − 3
2

Cn/2 − 1
l (x)

Cn/2 − 1
l (1)

=
1
zj

`p C 1N − 1
2

21 2
bj

2
N − 2

2

Il+N
2

− 1(bj) (3.17)

where Ir(.) is the modified Bessel function (ref. 15). From the fact that the
Tj are positivity improving operators (see ref. 17) it follows that

0 < ll(bj) < lo(bj)=1. (3.18)

The normalization lo(bj)=1 allows to determine zj explicitly and we get
for the eigenvalues finally

ll(bj)=
Il+N

2
− 1(bj)

IN
2

− 1(bj)
. (3.19)
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3.2. Thermodynamic Limit

In this subsection we will discuss explicitly the thermodynamic limit
for the one and two point functions of the spins. The generalization to
higher n-point functions is straightforward in principle.

To take the thermodynamic limit we need some information about the
limit of the product of a large number of transfer matrices. Since for h=0
all transfer matrices commute and have the same eigenprojections Pl, we
obtain

Tik= C
.

l=0
D
k − 1

j=i
ll(bj) Pl. (3.20)

So we have to study the behavior of the products <k − 1
j=i ll(bj) for large k.

For this purpose we can use some results of refs. 14 and 13, where we
analyzed the asymptotic behavior of such eigenvalues (actually for more
general forms of the Hamiltonian). The main result is

ln ll(bj)=1 −
l(l+N − 2)

2bj
+O(b−2

j ). (3.21)

We define for i [ k

Ll(i, k)=D
k − 1

j=i
ll(bj). (3.22)

Using (3.21) and Proposition 2.1 we find the asymptotic behavior of
ln Ll(1, k):

ln Ll(1, k)=−
l(l+N − 2)

2b

1
2DD(2 − D)

k2 − D+O 1k2(2 − D)

b2
2 for 1 [ D < 2,

(3.23)

ln Ll(1, k)=−
l(l+N − 2)

2b

1
8

ln k+O(b−2) for D=2 (3.24)

and

ln Ll(k, .)=−
l(l+N − 2)

2b

1
2DD(D − 2)

k2 − D+O 1k2(2 − D)

b2
2 for D > 2.

(3.25)

Using this, we obtain easily
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Proposition 3.1. For D [ 2 Ti. — s-limk Q . Tik=P0. For D > 2 Ti.

exists but is strictly positive; s-limi Q . Ti.=1.

Proof. To prove strong convergence, it suffices by a 3E argument to
prove convergence of all the eigenvalues. We now treat three cases sepa-
rately:

(1) D=1: All Tj are equal and the result follows trivally from the
fact that for l \ 1 ll < 1

(2) 1 < D [ 2: The assertion follows from the fact that for all l \ 1

lim
k Q .

Ll(1, k)=0. (3.26)

To see this, use

ln D
k

j=i
ll(bj) [ C

k

j=i
(ll(bj) − 1)=− C

k

j=i

5l(l+N − 2)
2bj

+O(b−2
j )6 . (3.27)

According to Proposition 2.1 the first sum diverges to − .; more precisely,
it behaves like − (k)2 − D for 1 < D < 2 and like ln k for D=2. The sum of
the correction terms diverges for 1 < D < 3/2 at most like k3 − 2D, for
D=3/2 like ln k and converges for D > 3/2. In any case the asymptotic
behavior for large k is determined by the leading term; so the product of
the eigenvalues diverges to zero and the assertion follows.

(3) D > 2: The product of the eigenvalues Ll(k, .) converges abso-
lutely to a nonzero value because

C
k

j=i
|(ll(bj) − 1)| (3.28)

converges for k Q .. L

One and two point functions simplify in the thermodynamic limit,
provided either 1 [ D [ 2 or we have free b.c. at 1 (i.e., a=1. Free b.c. at 1
seem most natural anyway from the point of view of the D dimensional
lattice; if we consider O(N) invariant observables, however, it is just as
legitimate to choose a ] 0, since in the thermodynamic limit this only
means fixing the global O(N) invariance.

We first discuss the case 1 [ D [ 2 and a=0. In this case the Hilbert
space vector k in the expression (3.8) becomes proportional to the ‘‘ground
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state’’ ko, which is the function identically equal to 1 on SN − 1. k0 spans the
range of P0; it is invariant under all Tj and therefore we obtain

Osa(i)PL=
(k0, saTiLk̃)

(k0, k̃)
(3.29)

and

Osa(i) sb(k)PL=
(k0, saTiksbTkLk̃)

(k0, k̃)
. (3.30)

Next we use the fact that sa maps the subspace H0 into the subspace H1, to
conclude (assuming i [ k)

Osa(i)PL=
(k0, sak̃)
(k0, k̃)

L1(i, L) (3.31)

and

Osa(i) sb(k)PL=
(k0, sasbTkLk̃)

(k0, k̃)
L1(i, k). (3.32)

Now we take the thermodynamic limit, using Proposition 3.1. We obtain
for 1 [ D [ 2:

Osa(i)P.=0 (3.33)

and

Osa(i) sb(k)P.=(k0, sasbk0) L1(i, k). (3.34)

By O(N) invariance it is easy to see that

(k0, sasbk0)=
1
N

dab. (3.35)

More generally, by the same reasoning, if F is a bounded measurable func-
tion of finitely many spins s(i1),..., s(ik), and F̄ its O(N) average,

OFP.=OF̄P.. (3.36)

Finally let us discuss what happens for 1 [ D [ 2 and a ] 0, provided
we consider O(N) invariant observables. So let F̄ now be an O(N)
invariant bounded measurable function of finitely many spins. In this case
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the Hilbert space vector k in the expression (3.8) becomes a function k(a)
with (k(a), k0) ] 0. But in the thermodynamic limit, again using Proposi-
tion 3.1, we obtain

OF̄P., a, b=
(k(a), F̄k0)
(k(a), k0)

=(k0, F̄k0), (3.37)

which is independent of a and b.
We summarize what we have found for ‘‘low’’ dimension in

Theorem 3.2. For 1 [ D [ 2 and a=0 (free b.c. at 1) in the ther-
modynamic limit, irrespective of the b.c. at L (i.e., b) the following holds:

• Osa(i)P.=0

• Osa(i) sb(k)P.= 1
N dab <k − 1

j=i l1(bj)= 1
N dabL1(i, k).

In addition for any bounded measurable function F of finitely many spins,
and F̄ its O(N) average, we have

OFP.=OF̄P.. (3.38)

Furthermore for arbitrary a OF̄P. is independent of a and b. Finally for
k Q . we have the asymptotic behavior

Osa(i) sb(k)P. ’ dab
1
N

exp 1 −
N − 1

2D2Db(2 − D)
k2 − D2 (1 [ D < 2) (3.39)

and

Osa(i) sb(k)P. ’ dab
1
N

exp 1 −
N − 1
16b

ln k2 (D=2). (3.40)

For D > 2 the situation is different and a little more involved. We have

Osa(i)P.=
(k0, sak̃)
(k0, k̃)

L1(i, .) (3.41)

and

Osa(i) sb(k)P.=
(k0, sasbTk.k̃)

(k0, k̃)
L1(i, k). (3.42)
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If we choose Dirichlet b.c. by sending k̃ to a delta function deN
concen-

trated at s=eN, the one point function simplifies to

Osa(i)P., Dir=daNL1(i, .). (3.43)

We can analyze the 2 point function further by using the fact that only
the subspaces H0 and H2 contribute here; generally we have

(k0, sasbf)=
dab
N

(k0, s2P0f)+1k0, 1 sasb −
dab

N
s22 P2f2 (3.44)

for any f ¥ H. Inserting f=Tk.k̃ we obtain

Osa(i) sb(k)P.=dab
1
N

(k0, s2k̃)

(k0, k̃)
L1(i, k)

+
(k0, (sasb − dab

1
N s2) k̃)

(k0, k̃)
L1(i, k) L2(k, .). (3.45)

Using the fact that

(k0, s2k̃)
(k0, k̃)

=1 (3.46)

and taking the limit k Q . we obtain

lim
k Q .

Osa(i) sb(k)P.=5dab
1
N

+1k0, 1 sasb − dab
1
N

s22 k̃26 L1(i, .).
(3.47)

This latter expression is in general nonzero, but for Dirichlet b.c. (k̃=deN

we can evaluate it further, because in this case

1k0, 1 sasb −
dab

N
s22 k̃2=daNdb1 − dab

1
N

(3.48)

and we obtain

lim
k Q .

Osa(i) sb(k)P., Dir=daNdbNL1(i, .). (3.49)

Comparing with the result (3.43) for the one point function we see that the
latter limit equals

lim
k Q .

Osa(i)P., Dir Osa(k)P., Dir. (3.50)
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In other words, for Dirichlet b.c. at L Q ., the truncated two point func-
tion

Osa(i); sb(k)P., Dir — Osa(i) sb(k)P., Dir −Osa(i)P., Dir Osb(k)P., Dir (3.51)

goes to 0 for k Q .. In this sense we may interprete the state with Dirichlet
b.c. at . as a pure phase of the system. Note also that by (3.25) the limit is
approached like k2 − D.

We can still work out the truncated two point function for Dirichlet
b.c. at . in a little more detail: from Eq. (3.45) we have

Osa(i); sb(k)P., Dir=dab
1
N

L1(i, k)+1daNdbN
− dab

1
N
2 L1(i, k) L2(k, .)

− daNdbN
L1(i, .) L1(k, .) (3.52)

which can be rewritten as

1daNdbN
− dab

1
N
2 L1(i, k)(L2(k, .) − 1)

+daNdbN
(L1(i, k) − L1(i, .) L1(k, .)). (3.53)

For a=b ] N this is manifestly positive. Furthermore, it is also straight-
forward to see that the O(N) invariant truncated two point function is
positive:

Os(i); s(k)P > 0 (3.54)

where the semicolon is meant to include the dot symbolizing the scalar
product in RN.

Let us now summarize what has been found for D > 2 in

Theorem 3.3. For D > 2 and and a=0 (free b.c. at 1) in the ther-
modynamic limit

• the one-point function is

Osa(i)P.=L1(i, .)
(k0, sak̃)

(k0, k̃)
(3.55)

which is nonzero provided the scalar product in the numerator does not
vanish. This is in particular the case if sa=sN and the b.c. parameter b > 0.
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• limk Q . Osa(i) sb(k)P. is generically nonzero.

• For Dirichlet b.c. (b Q .) the one point function is

Osa(i)P., Dir=daNL1(i, .); (3.56)

furthermore the two point function has the cluster property

lim
k Q .

Osa(i); sb(k)P., Dir=0. (3.57)

The truncated two point function behaves like

Osa(i); sa(k)P — Osa(i) sb(k)P., Dir −Osa(i)P., DirOsa(k)P., Dir=O(k2 − D).
(3.58)

From the two theorems we can easily derive results about the magne-
tization:

Corollary 3.4. For 1 [ D [ 2 the spontaneous magnetization M.=
limL Q . ML vanishes, irrespective of the b.c. For D > 2 the model has
spontaneous magnetization with suitable b.c.; for Dirichlet b.c. M.=1.

Proof. The spontaneous magnetization M. is, according to 2.13 a
certain weighted average of the 1-point function OsN(i)P.. The one point
function converges for i Q . to

OsN(.)P.=
(k0, sNk̃)

(k, k̃)
. (3.59)

Any average of a convergent sequence is equal to its limit, so we have

M.=OsN(.)P. . (3.60)

For Dirichlet b.c., because k̃ becomes the distribution deN
concentrated at eN,

the last quantity is equal to 1. L

The physical interpretation of the fact that the truncated two point
function Osa(i) sa(k)P decays faster than any power of k for 1 [ D [ 2 is
that the model is in its high temperature phase for any value of b. Likewise
the power-like decay in D=2 means that the model is critical for any b.
The power-like decay of Osa(i); sa(k)P for D > 2 expresses the presence of a
Goldstone-like mode in the system.

The susceptibility is a little pathological in our model. As defined
above, it diverges in general (except for D=1) due to the freezing of the
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spins within one layer. Namely, if the truncated two point function is non-
negative (as it is, according to the discussion above), we have

qL=
b

VL
C
L

i, k=1
gi gkOsN(i); sN(k)P \ C

L

i=1
g2

i OsN(i)2P=
b

NVL
C
L

i=1
g2

i (3.61)

which diverges for L Q ..

3.3. Presence and Absence of Asymptotic Freedom

In this subsection we discuss the issue of asymptotic freedom using a
definition of the Callan–Symanzik b-function bCS due to Patrascioiu. (5) We
use the truncated two point function

Gb(i, k) — Os(i); s(k)P (3.62)

to define the following Renormalization Group (RG) invariant quantity:

Fb(i, k) —
Gb(2i, 2k)
Gb(i, k)

. (3.63)

We rescale the lattice distances in Fb and ask how this can be compensated
by a change of the coupling constant g — 1/`b.

This compensation cannot be made exact by only changing b, but it
works aymptotically in the limit of many iterations, or equivalently for the
large distance asymptotics.

Since we have the asymptotic behavior (see (3.25))

Os(i) · s(k)P ’ exp 1 N − 1
2DD(D − 2) b

(i2 − D − k2 − D)2 (3.64)

(for k > i), it is seen straightforwardly that a doubling of i and k can be
compensated by replacing b with 22 − Db or g with 2D/2 − 1. Of course there
are corrections of order 1/bk to the exponent and we will compute the first
one of these corrections in the next section, but they do not affect the
qualitative conclusions.

If we interpolate Fb to obtain a smooth function on R2 we can do this
rescaling infinitesimally and find that Fb obeys, at least asympotically, the
following RG equation:

(“t+bCS(g(t)) “g) Fb(e ti, e tk)=0. (3.65)
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This equation should really be interpreted at the definition of the Callan–
Symanzik b-function, i.e., we have to set

bCS(g(t))=−
“tFb(e ti, e tk)
“gFb(e ti, e tk)

(3.66)

which yields, putting t=0 and g(0)=g,

bCS(g)=
D − 2

2
g+O(g2). (3.67)

This result shows that for D < 2 the model is asymptotically free, whereas
for D=2 it is critical for any b > 0, i.e., we have a half-line of fixed points.
This is true for any N > 1, i.e., there is no qualitative difference between
the abelian and the nonabelian versions of the model.

For D > 2 the analysis is a little different, because we have to take the
truncation into account. The asymptotic behavior of the truncated two
point function is

Os(i); s(k)P ’ exp 1 −
N − 1

2DD(D − 2) b
(i2 − D − k2 − D)2

− exp 1 −
N − 1

2DD(D − 2) b
(i2 − D+k2 − D)2 (3.68)

i.e.,

Os(i); s(k)P ’ − 2
N − 1

2DD(D − 2) b
k2 − D. (3.69)

Forming the renormalization group invariant Fb we see that the depen-
dence on b as well as the scale parameter drops out. The RG equation is
satisfied with

bCS=0. (3.70)

Of course, strictly speaking, bCS is left undetermined by Eq. (3.65) and
Eq. (3.66). But bCS=0 also is the right answer if we consider the more
general RG equation satisfied by the truncated two point function itself:

(“t+bCS(g(t)) “g − (D − 2)) Gb(e ti, e tk)=0. (3.71)

We conclude that the model is thus also critical for D > 2; the reason is of
course the presence of the Goldstone-like mode.
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3.4. Gibbs States and Phase Structure

In this subsection we will discuss the set of Gibbs states of our model
for the semi-infinite chain, obtained by taking the thermodynamic limit of
finite chains with various b.c. As before, we will use free b.c. at 1 (a=1),
but the following should be noted:

Remark. If a Gibbs state O ·P is O(N) invariant, we can modify it by
introducing an arbitrary measure for a particular spin, without affecting
the expectation values of O(N) invariant observables. In particular these
expectation values become independent of the measure k chosen for the
b.c. at 1.

Gibbs (=equilibrium) states can be characterized by the DLR equa-
tions. (6, 7) Consider a local observable O(s(i),..., s(k)), i.e., a continuous
function of a finite number of spins (1 [ i < k); then the DLR equations
imply that for any integer r \ 0

OOP=OÕrP (3.72)

where Õr is a function of s(i) and s(k+r)

Õr(s, s −)=
1
Z

F O(s(i),..., s(k)) D
k+r − 1

j=i
Tj (s(j), s(j+1)) D

k+r − 1

j=i
dn(s(j))

(3.73)

with

Z=F D
k+r − 1

j=i
Tj (s(j), s(j+1)) D

k+r − 1

j=i
dn(s(j)) (3.74)

So among other things, going from O to Õr attaches a product of r transfer
matrices to the observable. We can now ask what happens if we send
r Q .. In low dimensions (1 [ D [ 2) that product converges in the strong
topology to P0, as we saw. This is already sufficient (by letting the adjoint
of those operators act ‘‘to the left’’) to conclude that for any Gibbs state
and 1 [ D [ 2

OOP=OOP̃0P (3.75)

where we use same symbol P0 also for the integral kernel of the operator,
i.e.,

P0(s, s −)=k0(s) k0(s −) — 1. (3.76)
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The insertion of P0 has the same effect as free b.c. at a point m with m > k,
so that we conclude

OOP=OOPfree. (3.77)

So remembering that we made the general assumption a=1 in this
section, we have obtained the result:

Theorem 3.5. For 1 [ D [ 2 with free b.c. at 1, there is a unique
Gibbs state obtained as a thermodynamic limit. In particular this Gibbs
state is O(N) invariant.

Remark. As noted above, this implies that for O(N) invariant
observables, all b.c. at i=1 are equivalent.

Now we turn to the cae D > 2. This turns out to be a little trickier and
we do not obtain a complete rigorous description of all the Gibbs states.
There is, however, a very natural conjecture.

Let us first state what we can prove:

Theorem 3.6. For D > 2 there is an uncountably infinite set of Gibbs
states parametrized by the set of probability measures on the sphere SN − 1.
The extremal states in this set are given by the probability measures de

concentrated in one point of e ¥ SN − 1.

Proof. It follows from Proposition 3.1, as in the proof of Theorem 3.3,
that the thermodynamic limit with a boundary measure k̃ exists for any
local observable. Theorem 3.3 says first of all that the one point function in
general will be different for different choices of k̃. We can easily generalize
the Dirichlet b.c. discussed there by choosing

k̃=de (3.78)

where de is the delta function concentrated on a general point e ¥ SN − 1. The
one point function will then be

Os(i)P., e=L1(i, .) e (3.79)

so all these states are different for different choices of e.
It is also easy to see that these generalized Dirichlet states are all

extremal in the set of states given by boundary measures k̃, because they
satisfy

Os(.) · eP., e=1 (3.80)
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whereas in any other state one has

Os(.) · eP < 1. L (3.81)

What we do not know rigorously is whether we have exhausted all the
Gibbs states by our b.c. k̃, but it is very plausible that this is so. So we state

Conjecture 3.7. For D > 2 the set of Gibbs states is given by the set
of measures k̃ on the sphere SN − 1.

4. PERTURBATION THEORY

4.1. Preliminaries

Perturbation Theory (PT) is nothing but the application of Laplace’s
method to the Gibbs measure. For a finite system, the Gibbs factor is very
sharply peaked around the ground state configuration(s). To make PT
work, we need a unique such ground state, and we achieve that by a suit-
able choice of b.c. The Gibbs measure is then to lowest order (‘‘tree level’’)
approximated by a Gaussian centered at the ground state, and a sequence
of corrections to the Gaussian arises naturally by Laplace’s method.

For a finite system one can show easily that the resulting expansion in
inverse powers of b is asymptotic to the true expectation values. The usual
formal PT procedure takes the thermodynamic limit term by term and
hopes, if that limit exists, to obtain an expansion that is asymptotic to the
infinite volume Gibbs state. It is well known that this hope fails in some
cases (see refs. 4, 5, and 11, and here we will find that it fails in general for
dimension D [ 2.

From now on we assume that we have b.c. characterized by b > 0 and
a \ 0. Then the ground state configuration is unique and is described by
s(j)=eN for all j. For large b with high probability the spins will fluctuate
not very far from eN. This motivates the introduction of Cartesian coordi-
nates on the sphere SN − 1 (as in the classic paper of Brézin and Zinn-Justin (18))
to describe these fluctuations:

s(j)=1b−1
2 pj

sj

2 , with sj := ± (1 − b−1p2
j )

1
2 . (4.1)

These coordinates are singular at the equator, but since we are interested in
an asymptotic expansion in powers of 1/b, we can ignore this fact. We can
actually limit ourselves to integrating over the upper hemisphere, i.e.,
always choose the+sign in the definition of sj. Finally we can extend the
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integration over each pj to all of RN − 1. All these changes have only an
exponentially small effect (in b) on the integrals, as long as we work with a
finite system L < ., and therefore they do not affect PT.

The partition function can therefore be replaced by

ZL(h, a, b, D)

=F exp 5 C
L − 1

j=1
bj (pj · pj+1+b(1 − b−1p2

j )
1
2 (1 − b−1p2

j+1)
1
2)

+bh C
L

j=1
gj(1 − b−1p2

j )
1
2+ba (1 − b−1p2

1)
1
2+bb(1 − b−1p2

L)
1
26

× exp 5−
1
2

C
L

j=1
ln(1 − b−1p2

j )6 D
L

j=1
dpj. (4.2)

and accordingly for the expectation values. In other words, for the purpose
of PT we are reduced to studying the Gibbs measures

dmL(p1,..., pL)=
1

ZL
exp(AL) D

L

j=1
dpj (4.3)

with

AL=5 C
L − 1

j=1
bj (pj · pj+1+b(1 − b−1p2

j )
1
2 (1 − b−1p2

j+1)
1
2)

+bh C
L

j=1
gj(1 − b−1p2

j )
1
2+ba(1 − b−1p2

1)
1
2+bb(1 − b−1p2

L)
1
26

−
1
2

C
L

j=1
ln(1 − b−1p2

j ). (4.4)

It is now clear how to proceed; we expand A in powers of b; in this paper
we will be content to do this to order 1/b:

A=2D − 1bVL(1+h)+abb1+bb+A (0)+A(1)+O(b−2) (4.5)

where the piece O(b0) is quadratic in the pj variables:

A (0)=−
1
2

C
L − 1

j=1
bj(pj+1 − pj)2 −

h
2

C
L

j=1
gjp

2
j −

a
2

p2
1 −

b
2

p2
L (4.6)
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and the term O(b−1) is

A (1)= −
1

2b
5 C

L − 1

j=1
bj
1p2

j+1 − p2
j

2
22

+
h
4

C
L

j=1
gj(p2

j )2 − C
L

j=1
p2

j +
1
4

a(p2
1)2+

1
4

b(p2
L)26 . (4.7)

As long as not a=b=h=0, − A (0) is a positive definite quadratic form in
the pj which we write as

A (0) — − 1
2 (p, Qp) (4.8)

where p stands for the vector (pa
i )a=1,..., N − 1

i=1,..., L in R (N − 1) L and Q has matrix
elements Qab

ik =dabqik. We combine A (0) with the Legesgue measure to
produce the Gaussian probability measure

dmC(p)=
1

Z (0)
L

exp(− 1
2 (p, Qp) (4.9)

with covariance C=Q−1. C is proportional to the identity operator in the
internal space RN − 1, i.e., its matrix elements are of the form Cab

ik =dabcik.
A (1), even though it contains also terms quadratic in p, is treated as an
interaction because it is of order b−1.

4.2. Spin Two Point Function

We first derive the explicit form of PT up to order b−2 for the
invariant spin-spin correlation in terms of the covariance of the Gaussian
measure up to order b−2. First note that

Os(i) · s(k)P=1 −
1

2b
O(pi − pk)2P−

1
8b2 O(p2

k − p2
k)2P+O(b−2) (4.10)

provided we have a, b, h \ 0 and at least one of them > 0, because then the
ground state will have all spins aligned parallel to eN. As usual, PT is gen-
erated by expanding also the interaction in inverse powers of b in the
Gibbs measure; as is well known, the correct normalization leads to the
phenomenon that ‘‘vacuum graphs cancel,’’ i.e., only terms survive in
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which the interaction is connected by ‘‘lines’’ (covariances) to the observ-
able. Thus

Os(i) · s(k)P=1 −
1

2b
O(pi − pk)2Pc −

1
8b2 O(p2

i − p2
k)2Pc

−7 1
2b

(pi − pk)2; A (1)8
c
+O(b−3) (4.11)

where the semicolon indicates that only contributions are to be taken that
connect the expression to the left with that to the right of it. O.Pc denotes
the Gaussian expectation value with covariance c and A (1) is defined in
Eq. (4.7).

The term order b−1 is therefore

Os(i) · s(k)P (1)=−
N − 1

2b
(cii+ckk − 2cik). (4.12)

To order b−2 we find

Os(i) · s(k)P (2)=(I)+(II)+(III)+(IV)+(V) (4.13)

with

(I) — −
1

8b2 O(p2
i − p2

k)2Pc

=−
N − 1
8b2 [(c2

ii+c2
kk)(N+1) − 4c2

ik − 2(N − 1) ciickk], (4.14)

(II) — −
1

4b2 C
L

j=1
O(pi − pk)2; p2

j Pc=−
N − 1
2b2 C

L

j=1
(cij − ckj)2, (4.15)

(III) —
1

16b2 C
L − 1

j=1
bjO(pi − pk)2; (p2

j − p2
j+1)2Pc

=
N − 1
4b2 C

L − 1

j=1
bj{(N+1)[(cjj(cij − ckj)2+cj+1, j+1(ci, j+1 − ck, j+1)2]

− (N − 1)[cjj(ci, j+1 − ck, j+1)2+cj+1, j+1(cij − ckj)2]

− 4cj, j+1(cij − ckj)(ci, j+1 − ck, j+1)}, (4.16)

(IV) —
h

8b2 C
L

j=1
gjO(pi − pk)2; (pj)2P=

(N − 1)(N+1)
4b2 h C

L

j=1
gjcjj(cij − ckj)2

(4.17)
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and finally the boundary contribution

(V) —
1

8b2 O(pi − pk)2; a(p2
1)2+b(p2

L)2P

=
(N − 1)(N+1)

8b2 [ac11(ci1 − ck1)2+bcLL(ciL − ckL)2]. (4.18)

It is advantageous to rewrite contribution (III) as follows:

(III)=(IIIa)+(IIIb)+(IIIc) (4.19)

with

(IIIa) —
(N − 1) N

4b2 C
L − 1

j=1
bj(cjj − cj+1, j+1)[(cij − ckj)2 − (ci, j+1 − ck, j+1)2]

(4.20)

(IIIb) —
N − 1
4b2 C

L − 1

j=1
bj(cjj+cj+1, j+1)(cij − ckj − ci, j+1+ck, j+1)2 (4.21)

(IIIc) —
N − 1
2b2 C

L − 1

j=1
bj(cjj+cj+1, j+1 − 2cj, j+1)(cij − ckj)((ci, j+1 − ck, j+1).

(4.22)

4.3. The Covariance Without Magnetic Field

To proceed, we have to compute the covariance C more explicitly. We
only do this for the simplest case of free b.c. at 1 and no magnetic field, i.e.,
b=h=0, but with a > 0. We can ignore the internal space in this compu-
tation, i.e., put N=2. Then, with x ¥ RL, we have

(x, Qx)= C
L − 1

j=1
bj(xj+1 − xj)2+ax2

1. (4.23)

For convenience we define in the following b0 — a and bL — b. Q is already
given in the form

Q=LTL (4.24)

where L is a lower triangular (actually bidiagonal) matrix with elements

lkk=`bk − 1 and

lk+1, k= − `bk for k=1, 2,..., L (4.25)
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all other elements being zero. We now split

L=D+N (4.26)

where D=diag(`b 0,..., `bL − 1) and N is nilpotent. Then

C=Q−1=(1+D−1N)−1 D−2 (1+NTD−1)−1 (4.27)

D−1N has only nonzero matrix elements dik for i=k+1, and they are all
equal to − 1. Therefore Y — (1+D−1N)−1 has the matrix elements

yik=1 for i \ k

yik=0 otherwise. (4.28)

So, using the shorthand mik — min(i, k) we obtain for the covariance

cik= C
L

j=1
b−1

j − 1yij ykj= C
mik − 1

r=0
b−1

j (4.29)

for b — bL=0. If we introduce the further shorthand

Bik — C
k − 1

j=i
b−1

j (4.30)

we can write the covariance we found as

cik(a, 0)=B0mik
=B1mik

+a−1 (4.31)

where the second argument is reserved for the parameter b.
The covariance for general values of a and b (still without a magnetic

field) is obtained from this by realizing that changing the b.c. at L is a rank
one perturbation:

cik(a, b)=cik(a, 0) − (b−1+cLL(a, 0))−1 ciL(a, 0) ckL(a, 0). (4.32)

This can be written in more compact form if we use the definitions
Mik — max(i, k) and

B — (a−1+b−1+B1L)−1=
1

B0, L+1
: (4.33)
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as

cik(a, b)=BB0mik
BMik, L+1. (4.34)

We note some special cases:

cik(0, b)=BMikL+b−1=BMik, L+1 (4.35)

cik(., b)=BB1mik
BMik, L+1 (4.36)

cik(a, .)=BBMikLB0mik
. (4.37)

We also note the following combination of covariances:

cii(a, b)+ckk(a, b) − 2cik(a, b)=Bik(1 − BBik). (4.38)

The behavior for large L and the asymptotic behavior of the infinite
volume covariances for k Q . can be obtained from Proposition 2.1, which
implied that for 1 [ D < 2 Bik=O(k2 − D), for D=2 Bik=O(ln(k)) and for
D > 2 Bik=O(1). The thermodynamic limit is particularly easy to take for
b=0, because in that case by Eq. (4.31) the covariance does not show any
dependence on L.

In general for 1 [ D [ 2

lim
L Q .

cik(a, b)=B0mik
(4.39)

independently of b, provided a > 0. For 1 [ D [ 2 and a=0 the thermo-
dynamic limit of the covariance does not exist.

For D > 2 the thermodynamic limit always exists, but it depends on
the b.c. parameter b.

For the general case with a magnetic field there are no such simple
expressions for the covariance. A very detailed discussion with many
explicit and lengthy formulae can be found in ref. 10.

4.4. Explicit Evaluation to One Loop

We will first discuss the simplest case of the ‘‘energy,’’ that is the two
point function of two neighboring spins.

To order b−1 (‘‘tree level’’), we have

Os(i) · s(i+1)P=1 −
N − 1

2b
(cii+ci+1, i+1 − 2ci, i+1)+O(b−2). (4.40)
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Using Eq. (4.38) we thus find

Os(i) · s(i+1)P=1 −
N − 1
2bi

(1 − Bb−1
i )+O(b−2) (4.41)

and taking the thermodynamic limit of the first order term we obtain

Os(i) · s(i+1)P (1)=b−1
i (1 [ D [ 2) (4.42)

and

Os(i) · s(i+1)P (1)=b−1
i
11 −

b−1
i

b−1+B0.

2 (D > 2). (4.43)

This means that for D > 2 already at tree level PT shows a dependence on
b.c. even for such a simple O(N) invariant observable. By expanding the
nonperturbative solution of the model, analyzed in the previous section,
one can see that this is a real effect, related to the occurrence of sponta-
neous symmetry breaking (SSB). The dependence on the b.c. parameter b
drops out, however, if we use free b.c. at 1 (a=0). This happens because
for an invariant observable we can always introduce an arbitrary probabil-
ity measure for one and only one spin, without any effect, as explained
earlier.

To the next order (‘‘one loop level’’) the computation becomes a little
more involved. Since for D > 2 already the tree level term depends on the
b.c., we assume from now on 1 [ D [ 2.

We first consider the case a > 0, b=0. It is easy to see that in this case
term (V) vanishes in the thermodynamic limit. Term (IV) is absent because
we put the magnetic field h equal to zero. For the other terms, after some
trivial algebra one obtains

(I)=−
N − 1
8b2

i

[N+1+4biB0i], (4.44)

(II)=−
N − 1
8b2

i

[4(L − i)], (4.45)

(III)=
N − 1
8b2

i

[2(N − 1)+4(L − i)+4biB0i], (4.46)
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which adds up to

Os(i) · s(i+1)P (2) (a, 0)=
(N − 1)(N − 3)

8b2
i

. (4.47)

The case h=0 with general b.c. can also be worked out explicitly.
First note that the term (V) still does not contribute in the thermodynamic
limit: we have

(V)=
(N − 1)(N+1)

8b2 [ac11(ci1 − ck1)2+bcLL(ciL − ckL)2]. (4.48)

For a > 0 and any b the first term goes to 0 as L Q ., since by Eq. (4.39)
limL Q .(ciL − ckL)=0. For the second term we notice

bcLL(ciL − ckL)2=bB3B0mBm, L+1(B0i − B0k)2 b−2=bB3B0mBm, L+1B2
ik Q 0

(4.49)

for L Q ..
Inserting our formula Eq. (4.34) into the expressions at the end of

Subsection 4.2, the result for (II) and (III) splits into sums from 1 to i − 1
and from i to L − 1 or L. For the finite sums the limit L Q . can be taken
termwise and is actually zero, because each propagator carries a factor B
which goes to 0 as L Q .. After some algebra we are left with

(I)=−
N − 1
8b2

i

[N+1+4biB0i], (4.50)

(II)=−
N − 1
8b2

i

B2 C
L

j=i+1
B2

j, L+1 (4.51)

(IIIa) ’
(N − 1) N

4b2
3b−2

i +B2B2
ik C

L − 1

j=i+1
[2b−1

j Bj, L+1 − 4BB2
j, L+1]4 (4.52)

(IIIb) ’
N − 1
4b2

3b−2
i − B3B2

ik C
L − 1

j=i+1
2b−1

j B2
j, L+1)4 (4.53)

(IIIc) ’
N − 1
2b2 B2

ik C
L − 1

j=i+1
[B3B2

j, L+1 − B2b−1
j Bj, L+1 − B3b−1

j B2
j, L+1]. (4.54)

Here the symbol ’ means equality up to terms vanishing in the limit
L Q .. In arriving at these expressions we used the fact that some terms
vanish in the limit L Q .:
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Lemma 4.1. For 1 [ D [ 2 the following holds in the limit L Q .:

(1) B3 C
L − 1

j=i+1
b−2

j Bj, L+1 Q 0, (4.55)

(2) B3 C
L − 1

j=i+1
b−2

j B0j Q 0, (4.56)

(3) B3 C
L − 1

j=i+1
b−3

j Q 0. (4.57)

Proof.

0 < (1) [ B2 C
L − 1

j=i+1
b−2

j

0 < (2) [ B2 C
L − 1

j=i+1
b−2

j .

Using Proposition 2.1, it is seen easily that both upper bounds go to zero
for L Q .. (3) is even more elementary. L

There are also sums that converge to nonzero limits:

Lemma 4.2. For 1 [ D [ 2 and b > 0

(1) I1 — lim
L Q .

B2 C
L − 1

j=i+1
b−1

j Bj, L+1=1
2 (4.58)

(2) I2 — lim
L Q .

B3 C
L − 1

j=i+1
b−1

j B2
j, L+1=1

3 . (4.59)

For b=0 I1 and I2 vanish, because each term in the sums vanishes before
taking the limit.

Proof. The two statements are proven by ‘‘summation by parts.’’
First note that for any sequences fi, gi we have

C
B

j=A
[fj+1 − fj] gj=− C

B

j=A
[gj+1 − gj] fj+1+fB+1 gB+1 − fA gA. (4.60)
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Applying this to the sum in (1) above and noting that b−1
j =Bj+1, L+1 −

Bj, L+1, we obtain

C
L − 1

j=i+1
b−1

j Bj, L+1= C
L − 1

j=i+1
b−2

j +1
2 B2

i+1, L+1 − 1
2 b−2

L . (4.61)

From this the assertion (1) follows easily, using Lemma 4.1.
Applying the formula (4.60) to the expression in (2) above yields, after

some simplification,

C
L − 1

j=i+1
b−1

j B2
j, L+1= C

L − 1

j=i+1
b−2

j Bj, L+1 − 1
3 C

L − 1

j=i+1
b−3

j − 1
3 b−3

L +1
3 B3

i+1, L+1. (4.62)

Again the assertion follows from Lemma 4.1. L

Now we can add up all the contributions; the divergent terms cancel
and we obtain

(I)+(II)+(III) ’
N − 1
8b2

i

{ − 4B2B2
L, L+1+(N+1) − 8(N+1) I1+4NI2}.

(4.63)

For b=0 I1 and I2 vanish, B2B2
L, L+1=1 and we recover our old result

(4.47). For b > 0, however, the term B2B2
L, L+1 vanishes and the sums I1 and

I2 converge to 1/2 and 1/3. So we obtain

Os(i) · s(i+1)P (2) (a, b)=
(N − 1)(N − 5)

24b2
i

(4.64)

for b > 0.
So we have found that in our model PT gives results depending on b.c.

for any dimension (except for N=2)! While this is a sensible result for
D > 2 due to the occurrence of SSB, it signals a disease of PT for
1 [ D [ 2, where we have a unique Gibbs state. The right asymptotic
expansion to order b−2 is obtained only with free b.c., where the thermo-
dynamic limit is reached already for finite L. Free b.c. are ‘‘DLR b.c.’’ for
our model, corresponding to exactly integrating out the variables outside
our box.

We now turn to the general case Os(i) · s(k)P (2) (a, b) for i > k. The
computation is similar, only this time we have to split the sums into 3
parts: from 1 to i − 1, from i to k − 1 and from k to L or L − 1. For the
sums of finite range we can again take the termwise limit L Q ., which
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makes the sums from 1 to i − 1 disappear. The sums from i to k − 1
produce, among others

C
k − 1

j=i
b−1

j Bij=− 1
2 C

k − 1

j=i
b−2

j +1
2 B2

ik. (4.65)

Using this formula is is not difficult to find the final result:

Proposition 4.3. The one loop PT result for the spin-spin two point
function is for free b.c. (b=0):

Os(i) · s(k)P (2) (a, b)=
(N − 1)(N − 3)

8b2 B2
ik − 2(N − 1) 5 C

j=k − 1

j=i
b−2

j − B2
ik
6

(4.66)

and represents the correct aymptotics in the thermodynamic limit. Taking
the thermodynamic limit termwise for b > 0, we instead obtain the
incorrect result

Os(i) · s(k)P (2) (a, b)=
(N − 1)(N − 5)

8b2 B2
ik − 2(N − 1) 5 C

j=k − 1

j=i
b−2

j − B2
ik
6 .

(4.67)

A final remark concerns free b.c. at site 1 (a=0): since the result for
b=0 is strictly independent of L as well as a, and since the labeling of the
sites can be inverted (j Q L − j), the result for a > 0, b=0 is identical with
the result for a=0, b > 0, and therefore produces the correct asymptotics.

Comparing the results obtained with different b.c, we can sum up
what we have found as follows: the second order PT term for the invariant
two point function, computed by the conventional termwise thermody-
namic limit with b.c. parameters a, b > 0 differs from the correct second
order term by

dOs(i) · s(k)P (2) (a, b)=
(N − 1)(N − 2)

12b2 B2
ik . (4.68)

This dependence on b.c. we have found highlights a general problem of PT:
an infrared regulator is needed, but the standard procedure of removing
that regulator termwise yields ambiguous results. In general they are
incorrect, and only in our simplified model we are in the lucky situation to
know the DLR b.c. which yield the true answer.

490 Seiler and Yildirim



The case N=2 is special: we have not found manifest signs of a
disease of PT. In fact for the translation invariant O(2) model it has been
proven in ref. 19 that standard PT yields the correct asymptotic expansion.

4.5. Remarks on the Magnetic Field as Infrared Regulator

A popular infrared regulator in the non-linear O(N) s-models is the
magnetic field. It was used for the first detailed study of the perturbative
Renormalization Group and the asymptotic freedom predicted by it. (18) On
the other hand it has been known for many years that the usual procedure
of doing the perturbation expansion in the presence of a magnetic field and
than removing it termwise yields incorrect results already for a finite
number of spins (20) and in D=1. (4) Since our models are essentially one-
dimensional, the same phenomenon is expected to occur also here. This is
discussed in detail in ref. 10.

Here it would lead us too far afield to go into this very technical
matter, which involves interesting methods from the theory of continued
fractions. But it should be seen that introducing the b.c. parameters a and b
essentially amounts to the introduction of a local magnetic field, and we
have seen in the previous subsection that for N > 2 with a > 0 and b > 0 PT
produces incorrect results, independent of the values of a and b; hence
sending a, b Q 0 in the end does not help. So it should be clear that one
cannot hope for anything better with a global magnetic field.

5. PERCOLATION PROPERTIES

In this section we discuss briefly some percolation properties of the
model. Even though percolation is rather trivial in our essentially one-
dimensional systems, we find it worthwhile to check whether the general
ideas of refs. 2, 8, and 9 apply in this case. Not surprisingly, we find again
the familiar dichotomy between the situation in D [ 2 and D > 2.

We are interested in the percolation properties of sets defined by the
spin s lying in certain open connected subsets A of the sphere SN − 1, such as
the ‘‘polar caps’’ P+

E — s · eN > E/2 and ‘‘equatorial strips’’ SE — |s · eN | <
E/2 discussed in refs. 2, 8, and 9. For simplicity we say ‘‘a certain subset
A … SN − 1 percolates’’ when we mean that the set of points of our lattice
{i ¥ ZD |s(i) ¥ A} percolates.

Let us first discuss the case of no symmetry breaking (1 [ D [ 2):

Theorem 5.1. For 1 [ D [ 2 a subset A … SN − 1 whose complement
is open and nonempty never percolates.
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Remark. If one interpretes the model as living on ZD, this can be
viewed for D=1 as the formation of ‘‘islands’’ and for D=2 as the ‘‘ring
formation’’ discussed in refs. 2, 8, and 9.

Proof. Assume the contrary. Consider the characteristic function
qA(s(i)). Then by Theorem 3.2

OqA(s(i))P=F
A

dn(s), (5.1)

which is a number independent of i and < 1. On the other hand, if A
percolates,

lim
i Q .

OqA(s(i))P \ Olim
i Q .

qA(s(i))P=1 (5.2)

by Fatou’s lemma, which is a contradiction. L

We now turn to the case of spontaneous symmetry breaking (D > 2).
In this case it is to be expected that in the Gibbs state O.P., Dir, obtained as
the thermodynamic limit with eN-Dirichlet b.c., there is percolation of any
neighborhood of the ‘‘north pole’’ eN. To actually prove this requires
rather detailed technical estimates (cf. ref. 10). Here we will limit ourselves
to giving a simple proof of this fact for D > 3) and then show that it can be
extended to D > 5/2.

Theorem 5.2. For D > 5/2, in the state obtained as the thermody-
namic limit with eN-Dirichlet b.c., any open set A containing the point
eN ¥ SN − 1 percolates.

Proof. We will show that the probabilities for the events

ai — {s(i) ¨ A} (5.3)

are summable; the theorem then follows from the Borel–Cantelli Lemma,
which states that in this case with probability 1 only finitely many of the
events ai occur.

We have the following

Proposition 5.3. Let qE
i be the characteristic function of the set

B — {s(i) ¥ SN − 1 | |s(i) − eN | > E}. Then

OqE
iP., Dir < ci2 − D. (5.4)
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Proof. Obviously for any n > 0

qE
i [ 1 |s(i) − eN |

E
2n

. (5.5)

Using n=2 and the results of Section 3 we obtain:

O|s(i) − eN |2P., Dir=7 C
N − 1

a=1
sa(i)28

.

=
N − 1

N
11 −

L2(.)
L2(i)

y2

’ −
l(l+N − 2)

2b

1
2DD(D − 2)

i2 − D. (5.6)

The last expression is clearly summable over i for D > 3, so this proves
percolation for D > 3.

To extend the proof to D > 5/2, we have to work a little more. Again
by the Borel–Cantelli Lemma, the claim will follow from a sharpening of
Proposition 5.3:

Proposition 5.4.

OqE
iPDir < ci2(2 − D). (5.7)

Proof. We choose n=4 in the inequality 5.5. Denoting s(i) · eN — z
we expand |s(i) − eN |4 in Gegenbauer polynomials in z:

|s(i) − eN |4=1 − 2z2+z4=ao+a2C
N
2

− 1
2 (z)+a4C

N
2

− 1
4 (z) (5.8)

with

ao=
N2 − 1

N(N+2)
, (5.9)

a2=
4(N+1)

N(N − 2)(N+4)
, (5.10)

a4=
24

N(N2 − 4)(N+4)
. (5.11)

Thus we obtain, proceeding as in Section 3

O|s(i) − eN |4P., Dir=(ko, |s − eN |4 Ti.deN
)

=ao+a2C
N
2

− 1
2 (1) L2(i, .)+a4C

N
2

− 1
4 (1) L2(i, .). (5.12)
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Using now the asymptotics on Ll(i, .) found in Section 3, we find that the
constant terms, as well as the terms O(i2 − D), cancel and we are left with an
expression O(i2(2 − D)) as claimed. L

Remark. By developing the asymptotics of Ll(i, .) further, one
could presumably push the percolation threshold down to 2. Alternatively,
percolation for all D > 2 would follow also from the fact that the kernel
Ti.(en, s) decays as a Gaussian with variance O|s(i) − eN |2P., Dir.

6. CONCLUSIONS

The main purpose of this study of a solvable familiy of models was to
test certain ideas of Patrascioiu and Seiler concerning the two-dimensional
O(N) spin models. Let us review the outcome.

The central thesis of Patrascioiu and Seiler put forward in numerous
publications (see for instance refs. 2, 8, and 9) and references therein) is
that there is no fundamental qualitative difference between the ‘‘abelian’’
case N=2 and the ‘‘nonabelian’’ one N > 2. This is fully confirmed in the
solvable models studied here: critical behavior depends only on the dimen-
sion parameter D, with the models becoming critical at D=2 independent
of N.

Another point stressed by Patrascioiu and Seiler (5) is the fact that per-
turbation theory is ambiguous in D [ 2 and for N > 2; they suggest that
the difference found in the perturbative renormalization group between the
cases N=2 and N > 2 is an artefact of perturbation theory. This is again
borne out here, as discussed in Section 4.

Finally concerning percolation properties, we find that the ‘‘ring for-
mation,’’ proposed in ref. 2, 8, and 9 for the ‘‘soft phase’’ in D=2 actually
takes place in the models studied here.

Due to their simplicity these models are, however, lacking certain fea-
tures that the translation invariant O(N) models possess: due to their
essentially one-dimensionl nature there is no difference between ‘‘ring for-
mation’’ and formation of ‘‘islands’’ typical for the massive high tempera-
ture phase. In fact for D=2 the high temperature phase has been elimi-
nated altogether, in accordance with the fact the models are more ordered
than the translation invariant ones. So this unfortunately eliminates the
possibility of studying critical behavior in b.

In our view the models studied here give support for the ideas of
Patrascioiu and Seiler, but of course they cannot provide anything like a
proof of them.
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